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Abstract

Background: Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and
vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of
well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a
bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm
genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly
conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression
patterns of six transcription factors with embryonic germ layers and gut subregions during early development in
Capitella teleta.

Results: The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification
network. Here, we extend a previous study and characterize expression patterns of three network orthologs and
three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of
distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four
macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive
endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include
Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both
Ct-bra and Ct-nkx2.1a in the hindgut.

Conclusions: Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all
three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA
and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species
within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several
may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal
and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved
expression patterns suggest that ‘gut gene’ networks evolved to specify distinct digestive system subregions,
regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
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Background
In both protostome and deuterostome clades, sources of
endoderm (stomach, intestine, glands) and mesoderm
(connective tissue, coelom, somatic gonad, nephridia
and most muscle) are commonly derived from a bipo-
tential precursor cell or population of cells, called endo-
mesoderm [1-5]. Networks of transcription factors and
cell-signaling molecules have been shown to specify
territories of endomesoderm during embryonic deve-
lopment in several model organisms [4,6-11]. Gene
networks that specify endomesoderm are thought to
have been in place very early in metazoan evolution
[10,12-14] and appear to contain some network interac-
tions that are highly conserved, as well as some that are
evolutionarily labile [15,16]. Across the Metazoa, ortho-
logs of regulatory genes that specify endomesoderm have
different developmental roles during axial patterning
and gastrulation [5], cell signaling [17,18] and germ layer
specification [7,19,20]. Therefore, variation in the de-
ployment of ancient metazoan network genes may have
an important influence on patterning different cell types,
organ systems, and ultimately, the morphological diver-
sity of animals [15,16,21-24]. Despite the evolutionary
implications of this, relatively few studies have examined
the expression of endomesodermal network genes in
taxa that are distantly related to the standard develop-
mental model systems [4,12,16].
Capitella teleta, formerly known as Capitella sp. I [25]

is a marine, polychaete annelid worm and one of several
protostome spiralian taxa that develop through a highly
conserved, stereotypic program of spiral cleavage [2,26,27].
C. teleta is proving to be a valuable research organism
for investigating fundamental properties of cellular and
morphological development [28-32] and patterns of gene
expression from embryogenesis through organ system
formation in metatrochophore larvae and juvenile worms
[33-40]. Additionally, a sequenced genome [41] and com-
prehensive embryonic fate map [27,32] have become
useful resources for identifying candidate genes and accu-
rately interpreting their expression patterns. Among the
spiralian taxa, derivatives of endomesoderm contribute to
both endoderm and mesoderm associated with digestive
organ systems [2,26,42,43]; however, studies on this
diverse group of animals are underrepresented in the
context of how or when endomesoderm is genetically
specified.
The genetic specification of endoderm and mesoderm

in sea urchins [8,24,44] represents arguably the most
comprehensively described metazoan gene regulatory
network (GRN). Within that network, there is a hier-
archy of multigene subcircuits that interact to regulate
distinct processes during embryogenesis [10]. Upstream
of all other subcircuits there is a putative ‘kernel’ of the
network that is considered to be the ‘most impervious to
change’, unlike more flexible subcircuits within the
same GRN [10,16]. In both sea urchins and sea stars,
the endomesoderm ‘kernel’ contains an identical set of
core transcription factor genes that regulate the specifi-
cation of non-skeletogenic mesoderm and most of the
gut endoderm within the archenteron during embryonic
and larval development [15]. These core transcription
factors include Otx, Blimp1/Krox, Brachyury, Foxa, and
Gatae [8,10,16,44].
Although the architecture of a GRN cannot be de-

duced directly from any temporal or spatial patterns of
gene expression [44], some patterns should provide a
reasonable entry point for detecting evidence that a
putative network may be in place. In C. teleta, we have
previously characterized the expression patterns for or-
thologs of two core transcription factors, foxA and
GATA, which include three genes in the GATA456 sub-
class [37]. Those patterns were shown to be consistent
with possible roles in specifying embryonic domains of
oral ectoderm, endoderm and mesoderm during the
process of gut formation. In this study, we investigate
the remaining three core transcription factor genes,
orthodenticle (Otx), Blimp1 and brachyury (Bra), along
with Nkx2.1, goosecoid (Gsc), and FoxAB as additional
candidates involved in gut formation. Orthologs of an
Nkx2.1 gene are expressed in the foregut, midgut and
hindgut regions of chordates [45-47], the foreguts of a
sea urchin, fly, nematode and a mollusk [48-50], and the
posterior ectoderm of an acoel [51]. A goosecoid gene is
expressed in mesendoderm of a cephalochordate [52],
the foreguts of a sea urchin, fly, priapulid, mollusk and
polychaete [53-57], and oral ectoderm of an acoel [51].
And FoxAB, although found in several invertebrate ge-
nomes [58-60], yet without gut-related expression, is
consistently assigned to a clade containing FoxA factors,
which are known to regulate gut formation across the
Metazoa. For all six genes, we present orthology analyses
and characterize their expression patterns during deve-
lopment in embryos and larvae of C. teleta. With the ex-
ception of Nkx2.1, there is only one member of each of
the transcription factor types in the genome of C. teleta,
and each one has orthologous gene class members in
other metazoan taxa. All six genes have expression pat-
terns associated with development of the digestive organ
system. We discuss the identity, expression patterns and
potential for interaction of each gene in the context of
organ-system development and as components of a pu-
tative gene regulatory network in C. teleta and other
animals.

Methods
Animals
A colony of C. teleta was maintained in the laboratory
according to culturing methods originally established by
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Grassle and Grassle [61]. Revised protocols for seawater
and sediment exchange, temperature-controlled culture
conditions, feeding, and the handling of adult worms
were conducted according to Seaver et al. [33]. Brood
tubes from reproductive adult worms were dissected to
obtain embryonic and larval stages for the preparation
of nucleic acid templates and gene expression protocols.
Development from a fertilized egg to a feeding juvenile
worm takes approximately 9 days at 18 to 19°C [29,33].

Gene isolation and cloning
Total RNA was purified from a pooled sample of early
cleavage, blastula, gastrula and larval stages of C. teleta
with TRI REAGANT™ (Molecular Research Center Inc.,
Cincinnati, OH, USA). The 5′ and 3′ RACE-Ready cDNA
templates (Clontech Laboratories, Mountain View, CA,
USA) were constructed from total RNA and then utilized
for the rapid amplification of cDNA ends (RACE) with the
SMART RACE amplification kit (Clontech Laboratories,
Mountain View, CA, USA). Gene-specific RACE primers
for Ct-blimp1, Ct-nkx2.1a, Ct-foxAB and Ct-gsc were
designed from predicted gene models available within the
C. teleta genome database (http://genome.jgi.doe.gov)
at the Joint Genome Institute (JGI) [41]. Gene-specific
RACE primers for Ct-bra and Ct-otx were designed from
DNA sequences of degenerate PCR gene products. RACE
PCR fragments of each gene were purified from agarose
gels, subcloned into pGEM-T Easy vectors (Promega,
Madison, WI, USA), and sequenced by Macrogen Inc.
(Seoul, South Korea). RACE fragments of the following
lengths were isolated and verified: 1616 bp (5′) and
1800 bp (3′) for Ct-blimp1; 1534 bp (3′) for Ct-nkx2.1a;
1175 bp (5′) and 1347 bp (3′) for Ct-foxAB; 893 bp (5′)
for Ct-gsc; 713 bp (5′) and 1051 bp (3′) for Ct-bra; and
1030 bp (3′) for Ct-otx.

Gene sequence alignments and orthology analyses
Homologs of orthodenticle (Otx), Blimp1, brachyury (Bra)
and goosecoid (Gsc) within the genome of C. teleta were
identified using the tblastn alignment program, which re-
covered a single ortholog for each gene. Homologs of Nk2
class genes within the genome of C. teleta were identified
using blastx, which recovered two Nkx2.1 orthologs.
Amino acid sequence data of orthologs from a diversity of
animal taxa were obtained from the protein database within
GenBank [62] at NCBI (http://www.ncbi.nlm.nih.gov). Ad-
ditional amino acid sequence data from the mollusk Lottia
gigantea, amphioxus Branchiostoma floridae, and cni-
darian Nematostella vectensis were obtained by searching
genome databases [41]. Conserved amino acid domains
for each gene class were aligned using ClustalX with de-
fault parameters in MacVector v11.0 (MacVector, Inc.,
Cary, NC). Conserved domains included homeodomains
of Gsc and Otx, the homeodomain and Nk2-specific
domain of NKx2.1a, the zinc finger (C2H2) domain of
Blimp1, and the T-box domain of Bra. All of the align-
ments were edited by hand to correct for errors and ana-
lyzed with ProtTest v2.4 [63] to determine the appropriate
model of protein evolution. The Dayhoff model was re-
commended for Blimp1, the Jones model for Bra and Otx,
and the RtRev model for Gsc and NKx2.1a.
Bayesian and maximum likelihood analyses were per-

formed on all of the amino acid alignments to infer gene
orthology assignments for each of the respective can-
didate gene families. For each of the amino acid align-
ments, Bayesian analyses were performed with MrBayes
v3.1.2 [64] using four independent runs, with four chains
sampled every 100th generation for 1,000,000 genera-
tions; a total of 3,000,000 generations were analyzed for
Ct-NKx2.1a. Once convergence was reached, majority
rule consensus trees were generated with burnin values
of 275 (Blimp1), 225 (Bra), 250 (Gsc), 200 (Otx), or
9,200 (NKx2.1a). Maximum likelihood analyses were
performed with RAxML v7.0.0 [65] using 1,000 boot-
strap replicates and the same gene-specific ProtTest
models as for the Bayesian analyses. Nexus alignments
are available upon request. Gene trees were visualized
with FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/
figtree/) and edited with Adobe Illustrator CS4 (Adobe
Systems Incorporated, San Jose, CA, USA). A Bayesian
analysis of Ct-foxAB orthology was performed previously
[66]. Accession numbers for amino acid sequence data
in orthology analyses are available as Additional file 1:
Document S1.

Whole-mount in situ hybridization
Embryonic and larval stages of C. teleta were pretreated,
fixed and dehydrated according to the methods de-
scribed by Boyle and Seaver [37]. Whole-mount in situ
hybridization experiments were performed at 65°C for a
period of 72 hours and followed a published protocol
[33]. Single-stranded antisense ribonucleic acid probes
(riboprobes) were synthesized with the incorporation of
digoxigenin-11-uridine-5′-triphosphate (dig-11-UTP; Roche
Diagnostics Corporation, Indianapolis, IN, USA) using
either a T7 or SP6 MEGAscript kit (Ambion Inc., Austin,
TX, USA). Hybridization experiments were performed and
replicated with the following gene-specific riboprobe sizes
and working concentrations: Ct-otx, 1,030 bp at 2.0 ng/μl
(embryos), 1.0 ng/μl (larvae); Ct-blimp1, 1,616 bp at
1.0 ng/μl (all stages); Ct-bra, 1,476 bp at 2.0 ng/μl
(embryos), 0.5 ng/μl (larvae); Ct-nkx2.1a, 1,534 bp at
2.0 ng/μl (embryos), 1.0 ng/μl (larvae); Ct-foxAB, 1,175 bp
at 2.0 ng/μl (embryos), 1.0 ng/μl (larvae); and Ct-gsc,
893 bp at 2.0 ng/μl (all stages). Riboprobes were detected
by chromogenic staining of specimens treated with an
anti-digoxigenin-alkaline phosphatase (AP) conjugate anti-
body and exposed to an enzyme color reaction solution of
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(4.4 μl of 75 mg/ml nitroblue tetrazolium (NBT):3.3 μl of
50 mg/ml 5-bromo-4-chloro-3indolyl phosphate (BCIP))
per milliliter of AP buffer. Color reactions were terminated
with multiple exchanges of PTw (PBS with 0.1% Tween-20
detergent) and processed through a graded series of
hybridization buffer/PTw washes to denature residual anti-
body activity and remove extraneous background. Pro-
cessed whole-mount in situ specimens were stored in
glycerol (80% glycerol, 10% 1X PBS, 10% diH20). Replicates
of each expression pattern were mounted in glycerol
on coated microscope slides (Rain-X™, Sopus Products,
Huston, TX, USA) and analyzed under DIC optics with a
compound light microscope (Axioskop 2; Carl Zeiss, Inc.,
Thornwood, NY, USA). Images of selected specimens were
captured with a SPOT Flex digital camera (Diagnostic
Instruments Inc., Sterling Heights, MI, USA) and edited
with Photoshop CS3 (Adobe Systems Incorporated, San
Jose, CA, USA). Image stacking of multiple focal planes
was performed with Helicon Focus software (Helicon Soft
Ltd., Kharkov, Ukraine).

Results
Gene orthology analyses
Six candidate transcription factor genes were identified and
isolated to examine their patterns of expression and pos-
sible roles during development in the marine polychaete
annelid, Capitella teleta Blake, Grassle & Eckelbarger,
2009. Single copy gene orthologs of orthodenticle (Otx),
Blimp1, brachyury (Bra), FoxAB and goosecoid (Gsc), and
two orthologous genes of Nkx2.1, were identified in the
genome of C. teleta [41] (http://genome.jgi.doe.gov).
Bayesian (PP, posterior probability) and maximum like-
lihood (BS, bootstrap) analyses support specific assign-
ments for each of the genes to a distinct clade of
orthologs from deuterostomes, ecdysozoans and spira-
lians. Ct-otx was assigned to a clade of PRD class Otx
transcription factors [see Additional file 2: Figure S1]
(PP = 1.0; BS = 99%). Ct-blimp1 was assigned to a clade of
PRDM1/Blimp1 factors [see Additional file 3: Figure S2]
(PP = 1.0; BS = 85%). Ct-bra was assigned to a clade con-
taining other Brachyury/T factors [see Additional file 4:
Figure S3] (PP = 1.0; BS = 99%). The orthology of Ct-foxAB
was previously analyzed [66]. Ct-nkx2.1a forms a group
with Ct-nkx2.1b in the Nkx2.1 clade, distinct from a clade
of Nkx2.2 homeodomain factors [Additional file 5: Figure
S4] (pp = 0.96). Ct-gsc was assigned to a clade of PRD class
Gsc transcription factors [see Additional file 6: Figure S5]
(PP = 1.0; BS = 64%).

Brief summary of gut development in Capitella teleta
In C. teleta, the developmental life history pattern is
indirect and lecithotrophic, whereby adult female worms
brood relatively large yolky eggs that develop through a
series of embryonic and larval stages (Figure 1). Early
embryogenesis exhibits a conserved program of unequal,
quartet spiral cleavage [27,32]. The cleavage program is
associated with a stereotypic fate map, and the develop-
mental origins of most tissues are known [27,32]. The
endoderm is derived from four macromeres (3A, 3B, 3C,
and 4D) on the vegetal side of the 28- to 33-cell embryo.
The macromeres become internalized during gastrula-
tion by epiboly, and their descendants will form the mid-
gut of the alimentary canal. The blastopore completely
closes at the end of gastrulation, and a stomodeum
forms soon after to establish the definitive mouth. Ecto-
dermal precursors from the 2nd and 3rd quartet micro-
meres contribute to formation of the mouth, foregut and
hindgut, with 2a and 2c descendants contributing to the
rectum, 3c and 3d contributing to hindgut musculature,
and 4d descendants that form the anus [27]. During
foregut development, extensive morphogenesis occurs in
the muscular pharynx and the esophagus, which con-
nects the pharynx to the intestine [31,37]. From anterior
to posterior, the gut tube is highly regionalized and is
composed of a mouth, foregut (buccal cavity, pharynx,
and esophagus), midgut (intestine), hindgut (rectum)
and anus [27,31,37]. Organogenesis of the gut occurs
over a period of several days during larval development,
and the process is not complete until nonfeeding me-
tatrochophore larvae emerge from the brood tube at
stage 9 [27,30,37]. Feeding commences within 24 hours
following settlement and metamorphosis to a juvenile
worm.

Whole-mount in situ expression patterns
Orthodenticle
The expression of orthodenticle (Ct-otx) is initially de-
tected in 8-cell embryos. Expression is relatively higher
in the C and D macromeres; however, Ct-otx appears to
be expressed in all four macromeres and first quartet
micromeres (Figure 2A). The expression of Ct-otx was
observed to be associated with both daughter cells of the
first quartet micromeres (1q) during division. After the
1q division, Ct-otx is detected in the 1q2 daughter mi-
cromeres but not the animal daughter cells (1q1) of 16-
to 20-cell embryos (not shown). In embryos containing
28 to 33 cells (stage 1), Ct-otx is expressed in 3A to 3C
macromeres and 2nd quartet micromeres, with low
levels of expression in the 4D macromere and some 2d
daughter micromeres. Notably, no expression is detected
in 1q micromeres at this stage (Figure 2B). In stage 2
embryos containing 30 to 40 cells, there is a distinct
‘cross-shaped’ expression pattern on the animal pole
where Ct-otx is expressed in 2nd and 3rd quartet deri-
vatives, but not detected in any 1st quartet micromere
lineages (Figure 2C). There is expression in macromeres
at this stage, although expression of Ct-otx in the D
quadrant is low or undetectable when compared with
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Figure 1 Schematics of embryonic and larval development in Capitella teleta. (A) Ten stages of development representing a linear series of
events from fertilization through emergence of the stage 9 metatrochophore larva prior to settlement and metamorphosis to a juvenile worm.
Stages 1 to 9 each represent approximately 24 hrs at 18 to 19°C. (B) Schematics of selected embryonic and larval stages depicting endoderm
development and gut formation. Stage 3 schematics are shown with anterior to the left. Stage 4 and stage 6 larvae are oriented in pairs of
ventral and lateral views with anterior to the left. Gray shading represents endodermal precursor cells prior to gastrulation and during gastrulation and
as definitive endoderm after gastrulation during larval development. View orientations are shown below each embryo and larva. Abbreviations: ant,
anterior; bp, blastopore; br, brain; ec, ectoderm; en, endoderm; fg, foregut; hg, hindgut; mo, mouth; pos, posterior; St, stage; vcf, vegetal cross-furrow;
vnc, ventral nerve cord; yo, yolk; 1 m, 1st quartet micromere; 1 M, 1st quartet macromere; 3 m, 3rd quartet micromeres; 3 M, 3rd quartet macromeres.
Dotted line in stage 3 gastrula indicates the position of the blastopore. Thin solid lines internal to the contour of the body in stages 3, 4 and 6 indicate
the inner boundary of regions of ectoderm distinguished by low yolk content.

Boyle et al. EvoDevo 2014, 5:39 Page 5 of 19
http://www.evodevojournal.com/content/5/1/39
blastomeres from all other quadrants. During mid-
gastrulation (Figure 2D), there is a circular pattern of
Ct-otx expression on the animal hemisphere with a gap
of expression within the D quadrant and expression both
on and within the blastopore and in ectoderm at either
end of the embryo [see Additional file 7: Figure S6 A, B].
In late gastrulae, ectodermal expression domains are
detectable at both anterior and posterior ends of the em-
bryo and within both surface and subsurface cells at the
region of the blastopore (Figure 2E). In stage 4 larvae,
Ct-otx is expressed in a bilateral pattern in the anterior
ectoderm associated with brain anlagen, in domains of
head ectoderm outside the brain, and on left, right and
posterior sides of the stomodeum (Figure 3A, B). Ct-otx
is also expressed internally within endoderm cells ex-
tending from the position of the stomodeum to the
hindgut at the posterior end of the larva. There is a gap
in Ct-otx expression internally between the stomodeum
and midgut endoderm (Figure 3B). In stages 6 and 7,
Ct-otx is expressed in bilateral lobes of the brain, the de-
veloping foregut, lateral-posterior ectoderm within the
posterior growth zone of the segmented trunk, and
within a few cells of the ventral nerve cord along the
midline (Figure 3C, D). At stage 9, Ct-otx is expressed in
the brain, foregut, ventral nerve cord and posterior
growth zone (not shown).

B lymphocyte-induced maturation protein 1
The earliest expression of B lymphocyte-induced matu-
ration protein 1 (Ct-blimp1) is detectable in seven blasto-
meres of 28- to 33-cell embryos. In these stage 1 embryos,
Ct-blimp1 is expressed in 4A to 4D macromeres and 4a to



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Expression of Otx, Blimp1, Bra, Nkx2.1a, FoxAB and Gsc during embryogenesis in Capitella teleta. Each row shows expression
(blue color) for the single gene listed at the left margin. The approximate stage of development for the embryos in each column is listed at the
top margin. The orientation of each embryo is listed at the bottom right corner of every panel (anm, animal view; veg, vegetal view; vent, ventral
view). In embryos with approximately 28 to 33 cells, the D quadrant is toward the bottom of each panel. Yellow dotted lines indicate the
position of the blastopore. M is the animal view of L; R is the animal view of Q. Anterior is to the left in all Stage 3 embryos. (A-E) Ct-otx is
expressed in each macromere (black arrows) and micromere (white arrows) of 8-cell embryos (A), in micromeres (black arrows) encircling the
animal pole (B-D), in both anterior (black arrowheads) and posterior (white arrowheads) ectoderm and within and around the blastopore
(white arrows) of gastrulae (E). (F-J) Ct-blimp1 is not detected in macromeres (dashed black arrow) or micromeres (dashed white arrow) of 8-cell
embryos (F); Ct-blimp1 is expressed in macromeres (black arrow) and 4q micromeres (white arrow) of 28- to 33-cell embryos (G), in vegetal cells
(white arrows) of stage 2 and stage 3 embryos (H-I), and in the endoderm (J). (K-O) Ct-bra is expressed in each macromere (black arrows) and
micromere (white arrows) of 8-cell embryos (K), in macromeres (black arrows) and micromeres (white arrows) in each quadrant of 28- to 33-cell
embryos (L-M), anterior to the blastopore (short white arrows) and around the blastopore (dashed black arrows) of gastrulae (N), and on the
ventral anterior surface of late gastrulae (O). (P-T) Ct-nkx2.1a is expressed in each macromere (black arrows) and micromere (white arrows) of
8-cell embryos (P), in macromeres (black arrows) and micromeres (white arrows) of 28- to 33-cell embryos (Q-R), along the left and right sides of
the blastopore (S), and in both anterior ectoderm (black arrowheads) and endoderm (white arrows) of late gastrulae (T). (U-Y) Ct-foxAB is not
detected in macromeres (dashed black arrow) or micromeres (dashed white arrow) of 8-cell embryos (U); Ct-foxAB is expressed in a single
D-quadrant cell (white arrow) at the 28-cell stage (V), in each quadrant (white arrows) on the animal hemisphere of stage 2 (W), outside the
blastopore (white arrows) in vegetal micromeres (X), and in anterior surface cells (white arrows) encircling the site of stomodeum formation (Y).
(A’-E’) Ct-gsc is not detected in macromeres (dashed black arrow) or micromeres (dashed white arrow) of 8-cell embryos (A’); Ct-gsc is expressed in
two animal micromeres (white arrows) within embryos of approximately 28 cells (B’), in each quadrant (white arrows) on the animal hemisphere of
stage 2 (C’), in several micromeres (white arrows) anterior to the blastopore (D’) and in micromeres (white arrows) on the anterior surface of late
gastrulae (E’). bp, blastopore; St, stage. The image in each panel was created by combining micrographs from a series of focal planes.
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4c micromeres (Figure 2G). During stage 2, most of the
blastomeres on the vegetal hemisphere show Ct-blimp1 ex-
pression, with the exception of the D-quadrant (Figure 2H).
There are two or three blastomeres of the D-quadrant on
the animal hemisphere that show expression, although
Ct-blimp1 is not detectable in any other cells on the ani-
mal hemisphere at this stage. Embryos undergoing epiboly
during gastrulation show positive Ct-blimp1 expression in
approximately 18 to 20 cells on the vegetal plate, including
the conspicuously large macromeres (Figure 2I). During
gastrulation, transcripts are detectable in both nuclear
and cytoplasmic regions of vegetal cells, which become
localized around and within the blastopore between the
mid- and late gastrulation stages [see Additional file 7:
Figure S6 C, D]. In late gastrulae of stage 3, Ct-blimp1 ex-
pression is concentrated on the ventral side in the endo-
derm (Figure 2J). In this region, Ct-blimp1 is expressed in
surface and subsurface cells associated with the blastopore
and in one or two surface cells that are posterior to the
blastopore (Figure 2J). In stage 4 larvae, Ct-blimp1 is
expressed internally within the endoderm along the
anterior-posterior (A/P) axis, and there is no detectable
expression in any surface cells (Figure 3E, F). The same
pattern is observed in stage 5 larvae, with the addition
of low-level expression in the brain and foregut [see
Additional file 7: Figure S6 F, G]. At stage 6, the expression
of Ct-blimp1 in midgut endoderm is diminished, and there
are new expression domains in the bilateral lobes of the
brain, throughout most of the developing foregut, in a seg-
mental pattern along the trunk extending from the foregut
to the telotroch, and from the ventral side to the dorsal
side (Figure 3G, H). At stage 8, Ct-blimp1 is expressed in
the brain, foregut and posterior growth zone (not shown).

Brachyury
The expression of brachyury (Ct-bra) is initially detected
in all cells of the 8-cell embryo (Figure 2K). In stage 1
embryos with 28 to 33 cells, Ct-bra is expressed in A-D
macromeres and in a subset of second and third quartet
micromeres from each quadrant (Figure 2L, M). In stage
1 embryos for which the color reaction was extended
over a longer time period, labeling was detected in cells
at the animal pole that may indicate expression in first
quartet micromeres (not shown). During gastrulation,
Ct-bra is consistently expressed in surface and subsur-
face cells on left-lateral and posterior sides of the blasto-
pore in an asymmetric pattern and in surface cells that
are spread across the ventral-anterior side of the em-
bryo, distinct from blastoporal expression (Figure 2N).
At the completion of gastrulation, Ct-bra is expressed in
a semicircular pattern of surface cells anterior to the
blastopore and in several cells on left and right sides of
the midventral surface of the embryo (Figure 2O). In
stage 4 larvae, Ct-bra is differentially expressed on the
posterior side of the stomodeum and in surface cells at
the posterior end of the larval body (Figure 3I, J). With
longer color development, Ct-bra expression is detected
in anterior ectoderm, in both surface and subsurface
cells along ventrolateral sides of the body and in the
endoderm [see Additional file 7: Figure S6 E]. During
stages 6 to 7, Ct-bra is expressed in the brain, in subsur-
face cells along each side of the midline on the posterior



Figure 3 Expression of Otx, Blimp1, Bra, Nkx2.1a, FoxAB and Gsc during larval development in Capitella teleta. Each row shows
expression (blue color) for the single gene listed at the left margin. The stage of development for the larvae in each column is listed at the top
margin. The orientation of each larva is listed at the bottom right corner of every panel (vent, ventral view; lat, lateral view). For each row,
columns 1 and 2 are different views of the same stage 4 larva; columns 3 and 4 are different views of the same stage 6 larva. Anterior is to the
left in all panels; ventral is down for each lateral view. A black or white asterisk marks the position of the mouth. (A-B) Ct-otx is expressed in
anterior ectoderm, including the brain (white arrowheads), in the stomodeum (white arrows) endoderm (black arrows) and hindgut primordia
(black arrowheads) at stage 4. (C-D) Ct-otx is expressed in the brain (white arrowheads) foregut (white arrows) posterior segments (dashed black
arrows) and surface cells on the ventral midline (dashed white arrow) at stage 6. (E-H) Ct-blimp1 is expressed in endoderm (black arrow) at stage
4, and in the brain (white arrowheads) foregut (white arrows) most segments of the trunk (black arrows) and the posterior growth zone (dashed
black arrows) at stage 6. (I-L) Ct-bra is expressed on the posterior side of the foregut (white arrows) and in ectoderm at the posterior-most end of
the body (black arrowheads) of stage 4 larvae, and in the brain (white arrowheads) foregut (white arrows) and anus (black arrowheads) at stage 6.
(M-P) Ct-nkx2.1a is expressed in the brain (white arrowheads) foregut (white arrows) endoderm (black arrow) and hindgut (black arrowheads) in
stage 4 and stage 6 larvae. (Q-T) Ct-foxAB is expressed primarily in surface cells around the mouth (white arrows) and also lateral to the mouth
(black arrows, S) at stage 4 and stage 6. (U-V) Ct-gsc is expressed in surface cells around the mouth (white arrows) at stage 4. (W-X) Ct-gsc is
expressed in ectoderm cells anterior to the brain (white arrowheads) and in several anterior cells flanking each side of the brain and foregut
(white arrows) in stage 6 larvae. The image in each panel was created by combining micrographs from a series of focal planes.
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face of the foregut, and in the anus (Figure 3K, L), as
well as in mesoderm along the ventrolateral sides of the
trunk [see Additional file 7: Figure S6 H].

Nk2.1
The expression of Ct-nkx2.1a, one of two Nk2.1 genes in
C. teleta, is observed in each macromere and micromere
of the 8-cell embryo (Figure 2P). In 28- to 33-cell em-
bryos, Ct-nkx2.1a is expressed in most cells except for
some 2d lineage micromeres (Figure 2Q, R). During gas-
trulation, the only expression is in bilateral domains
flanking two sides of the blastopore (Figure 2S). In late
stage 3 gastrulae, Ct-nkx2.1a expression is detected in
paired clusters of 1 to 3 labeled cells in the anterior
ectoderm and in the endoderm (Figure 2T). Stage 4
larvae show Ct-nkx2.1a expression in four bilateral do-
mains. These include cell clusters in anterior ectoderm,
a subset of subsurface stomodeal cells, broadly dispersed
internal presumptive midgut cells, and a distinct subsur-
face domain at the posterior end (Figure 3M, N). Similar
expression domains persist during stage 5. In stage 6 to
7 larvae, Ct-nkx2.1a is expressed in a subset of brain
cells, in dorsal-anterior foregut tissue, within ‘web-like’ ex-
pression along the length of the midgut, and in the rectum
at the posterior terminus of the midgut (Figure 3O, P).
The expression of the second C. teleta Nk2.1 gene,

Ct-nkx2.1b, was characterized during larval stages. In
early stage 4 larvae, Ct-nkx2.1b is detected in the two
nascent brain lobes and in subsurface cells of the pre-
sumptive foregut [see Additional file 8: Figure S7 A, B].
By stage 5, additional expression appears as a broad
ventrolateral domain in the trunk ectoderm and meso-
derm that extends from posterior of the mouth to the
telotroch [see Additional file 8: Figure S7 C]. Expression
in the brain and foregut persists at this stage. At stage 6,
the trunk expression domains have expanded circum-
ferentially and meet at the ventral midline, and the
mesoderm expression extends slightly posterior of the
ectoderm expression, beneath the telotroch [see dashed
arrows in Additional file 8: Figure S7 D]. Ct-nkx2.1b is
also detectable in the hindgut [see the arrowhead in
Additional file 8: Figure S7 D]. Expression in the brain,
foregut and trunk is still present in stage 6 larvae. In sum-
mary, each of the two Nk2.1 genes of C. teleta has a
unique expression pattern. In the larval trunk, Ct-nkx2.1a
is expressed in the endoderm whereas Ct-nkx2.1b is
present in the ectoderm and mesoderm, although both
Ct-nkx2.1a and Ct-nkx2.1b are expressed in the brain,
foregut and hindgut.

Forkhead box A/B
The expression of forkhead box A/B (Ct-foxAB) is first
detectable in 28- to 33-cell embryos. At this stage,
Ct-foxAB is expressed within the D-quadrant, in two
distinct cells of the 2d lineage that are most likely 2d11

and 2d12 (Figure 2V). In late stage 1 embryos with 50 to
60 cells, Ct-foxAB is expressed in one cell, or pairs of
cells, in each quadrant on the animal hemisphere. Stage
2 late cleavage embryos show expression in several cells
of each quadrant on lateral margins of the animal hemi-
sphere (Figure 2W). During mid-gastrulation, Ct-foxAB
is expressed in multiple surface cells surrounding an-
terior and lateral sides of the blastopore on the vegetal
hemisphere (Figure 2X). Late gastrulae show Ct-foxAB
expression in surface cells on anterior and lateral sides
surrounding the position where the stomodeum will
form (Figure 2Y). With development of stage 4 larvae,
Ct-foxAB expression is limited to surface cells sur-
rounding the stomodeum, in a band 2 to 3 cells wide
(Figure 3Q, R). The expression of Ct-foxAB in stage 6
larvae is predominantly in subsurface oral ectoderm sur-
rounding the buccal tube (Figure 3S, T). Additional ex-
pression is in a bilateral pair of cell clusters positioned
lateral to the mouth and at low levels in internal epithe-
lia of the stomodeum. (Figure 3S, T). In stages 7 to 8,
there is a low level of Ct-foxAB expression in ectoderm
of the brain, foregut, and mouth and in mesoderm of
the posterior growth zone within posterior segments of
the trunk [see Additional file 7: Figure S6 I].

Goosecoid
The expression of goosecoid (Ct-gsc) is first detectable in
stage 1 embryos with approximately 30 cells. Ct-gsc is
expressed at this stage on the animal hemisphere in one
cell from each of the C and D quadrants (Figure 2B’). In
embryos with 47 to 56 cells, expression is detected on
the animal hemisphere in a minimum of one cell from
each of the C and D quadrants and typically 1 to 2 cells
from the A or B quadrant (not shown). In each embryo,
the expressing cells appear to be 3rd quartet micro-
meres. Stage 2 embryos express Ct-gsc on the animal
hemisphere in several cells from each of the four quad-
rants (Figure 2C’), and no expression is observed on the
vegetal hemisphere. During both mid- and late gastrula-
tion, Ct-gsc is expressed in a small number of surface
cells across the ventral-anterior face of the embryo, out-
side of the blastopore (Figure 2D’, E’). In stage 4 larvae,
Ct-gsc is expressed in a ring of surface cells surrounding
the mouth and cells extending laterally from the anterior
side of the mouth (Figure 3U, V). The stage 5 expression
pattern includes bilateral clusters of 1 to 2 cells each on
the surface between the mouth and prototroch and in
discrete cells on left and right sides lateral to the brain.
In stages 6 to 7, Ct-gsc is expressed in multiple cells and
cell groups at the position of the circumesophageal con-
nectives, where the expressing cells appear to extend
from each side of the brain in a ventral-posterior direc-
tion across lateral sides of the buccal cavity toward the
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ventral nerve cord (Figure 3W, X). There is also a bila-
teral pair of Ct-gsc-positive cells in the anterior ectoderm
(Figure 3W, X). Several cells in each of these anterior do-
mains have a distinctive elongate morphology.

Discussion
Gene orthologs of the sea urchin endomesoderm kernel
in Capitella teleta
We have identified a single ortholog each of Otx, Blimp1
and Brachyury transcription factor genes from the
genome of C. teleta, which supplements previous work
characterizing both foxA and GATA factors from the
same species [37]. This demonstrates that all five regula-
tory genes in the ‘kernel’ of the sea urchin endomeso-
derm GRN are present in an annelid, which is consistent
with previous records for subsets of these orthologs
within Spiralia [50,55-57,67-75] and thus confirms their
presence in all three superclades of the Bilateria. These
five genes are also in the genome of an anthozoan
cnidarian, Nematostella vectensis [14,76], indicating that
they were most likely present in a primitive metazoan
ancestor prior to the divergence of Cnidaria and Bila-
teria. Based on the orthology assignments for each of
the five individual genes (tree figures in this paper; and
[66]), it is clear that these gene families are broadly con-
served across the metazoan tree of life [51,77], although
the number of identified genes varies within particular
taxonomic groups.
There are three Otx orthologs in N. vectensis but fewer

in other cnidarians [78], two Otx proteins in a sea ur-
chin [79], at least three Otx proteins in a sea star [80]
and several copies in vertebrates despite evidence for a
single copy of Otx in an ancestral chordate [81]. Among
spiralians, there is no less variation in the number of
orthologs, with one in P. dumerilii [55] and two in
Hydroides elegans [70], and we identified at least three
Otx paralogs in the genome of a leech, Helobdella
robusta [41]. This demonstrates that Otx genes have ex-
perienced duplication, diversification and perhaps loss in
both bilaterian and non-bilaterian groups [79,81]. There
are comparatively fewer confirmed records of Blimp1
orthologs available; however, there is one gene in the
genome of L. gigantea, two genes in the H. robusta
genome [41], and one gene in the fruit fly genome
(http://flybase.org), and paralogs have been identified in
several vertebrates, especially primates [82], indicating they
are present in each of the three major bilaterian clades.
Outside Bilateria, one Blimp1 transcript (Nvblimp-like)
was identified in a cnidarian [14]. Of the many T-Box fam-
ily genes, single copies of brachyury are predominantly
found among protostomes, with multiple copies present
in several deuterostome clades [83]. Therefore, although
the five ‘kernel’ orthologs, including FoxA and GATA
[37,66,84,85], appear to have undergone taxon-specific
evolutionary changes in the number of genes or protein
products that are present, they have been retained across
a broad diversity of animal genomes.
Of the additional three transcription factors isolated

from C. teleta, orthologs of NK2 homeobox genes are
found in a sponge and two cnidarians [86-89], goosecoid is
also found in a cnidarian [90], and both genes have been
identified in the genomes of many bilaterians (see [51]) in-
cluding ecdysozoans [48,49,53] spiralians [50,55,56] and
chordates [45,47,52]. Interestingly, there are two Nk2.1
genes (Ct-nkx2.1a and Ct-nkx2.1b) in the genome of
C. teleta, which likely result from a clade-specific dup-
lication event. And though only a few records of FoxAB
factors are published, this gene is found in both proto-
stome and deuterostome clades [58,60,91]. All of the
genes discussed here, whether they are known members
of an established regulatory network [4,8,10,13,20] or not,
are considered to be associated with gut formation.

Conserved endodermal expression patterns without a
definitive ‘endomesoderm’
Endoderm in the sea urchin, C. elegans and spiralians is
generally derived from a bipotential ‘endomesoderm’. In
the sea urchin, embryonic endomesoderm gives rise to
gut endoderm and several types of mesoderm [8,44,92].
In the embryo of C. elegans, endomesoderm generates
the intestine and part of the muscular pharynx [4,93].
Spiralian endomesoderm is an embryonic precursor of
some endoderm of the intestine and most of the adult
mesoderm [1,2,43]. The endoderm derived from endo-
mesoderm territories in the sea urchin is specified at the
blastula stage from two sister lineages, veg2 and veg1
micromeres [8,11,94], whereas all of the endoderm in
C. elegans is derived from the ‘E’ cell, a single daughter
of the EMS cell in a 4-cell embryo [4,93,95], and in most
spiralians, endomesoderm is typically formed from the
4d micromere, the mesentoblast [2]. In C. teleta, the 4d
micromere is not a true mesentoblast. In fact, there is
no single cellular precursor for endomesoderm; all endo-
dermal tissues develop from 3A, 3B, 3C and 4D macro-
meres, and the mesodermal bands originate from the 3c
and 3d micromeres [27]. Yet regardless of whether a true
bipotential endomesoderm is broadly conserved across
these and other animals, and despite important cellular
and developmental differences between a sea urchin, a
nematode, a polychaete and other spiralians, the deploy-
ment of endomesodermal gene orthologs that likely spe-
cify tissues of digestive organ systems is notably similar.
Orthologs of the core set of five transcriptional regula-

tors in the sea urchin endomesoderm GRN are expressed
in overlapping domains in C. teleta during a similar de-
velopmental period (Figure 3A, B). In embryos containing
28 to 32 cells, all five genes (Ct-otx, Ct-blimp1, Ct-bra, Ct-
foxA, Ct-gataB1) are expressed in 3rd quartet macromeres

http://flybase.org
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on the vegetal pole, which is most likely during endoderm
specification. Co-expression of these five genes suggests
they could be involved in regulatory interactions in each
of the 3Q macromeres that contribute to endoderm in
C. teleta [27]. Each one of the five orthologs is also
expressed within and around the blastopore and in cells
that invaginate during gastrulation when the endoderm is
segregated from the other two germ layers (Figures 1 and
3A). During closure of the blastopore and formation of the
early larva at stage 4, each ortholog is also detected in-
ternally, within endoderm of the presumptive midgut ter-
ritory [37]. Thus, the co-expression patterns of Ct-otx,
Ct-blimp1, Ct-bra, Ct-foxA and Ct-gataB1 are spatially and
temporally correlated with endoderm specification, gastru-
lation and the presumptive midgut, a major component of
the digestive organ system in C. teleta. These results pro-
vide some evidence that endoderm formation in this poly-
chaete species may be under the control of a core gene
regulatory network, similar to what is characterized in the
sea urchin [8,44] and a sea star [15] and with some com-
monalities to what is shown in C. elegans [20]. Recent
expression profiles and functional experiments in the
emerging cnidarian GRN model show that three of the five
‘kernel’ genes (Nvotx, Nvbra, and NvfoxA) may have a cru-
cial role in specifying a bifunctional, endomesoderm-like
gastrodermis [14]. This indicates that at least a portion of
the kernel may have been in place in the cnidarian-
bilaterian ancestor. To move the spiralian polychaete sys-
tem toward direct comparisons with echinoderms, C. ele-
gans and N. vectensis, functional perturbations of gene
expression along with qPCR will be needed to confirm or
refute our inference of a putative endodermal GRN in
C. teleta. However, the developmental expression patterns
of all five ‘kernel’ orthologs that we have characterized,
along with previously published expression patterns for
additional orthologs of the sea urchin endomesoderm
GRN, provide a strong list of candidate genes with poten-
tial to function during endoderm specification in C. teleta.

Gene expression and cell fate support multiple roles
during gut development in Capitella teleta
Each of the genes isolated in this study exhibit patterns
of expression that are consistent with one or more roles
during gut development in C. teleta. Both Ct-foxAB and
Ct-gsc show specific expression associated with oral
ectoderm, although they are clearly in separate sub-
domains. Ct-foxAB is the only gene of C. teleta that ap-
pears to be restricted to the presumptive stomodeum
during gastrulation and larval development (Figures 2
and 3). This would imply its involvement in mouth for-
mation, although expression was not observed in 3a, 3b,
or 3c blastomeres, which are known to form the mouth
[27]. Hence, other transcription factors upstream of
Ct-foxAB may influence stomodeal development in
C. teleta. Ct-gsc appears to be expressed in a subset of
anterior neurons associated with the stomodeum and
foregut, and may be involved in development and diffe-
rentiation of the circumesophageal connectives and neur-
onal subtype identity. This is consistent with goosecoid
expression in oral ectoderm of an acoel flatworm [51] and
cells associated with the stomodeum in Drosophila [53]
and two spiralians (P. vulgata [56] and P. dumerilii [55]).
When considered together, these data suggest a conserved
role for Gsc orthologs in the stomotogastric component of
the central nervous system in protostomes, which is dis-
tinct from its conserved organizer function in vertebrates
[96,97]. Based solely on expression patterns, Ct-foxAB and
Ct-gsc appear to be disconnected from potential network
interactions with the other transcription factors that are
likely to be involved in endoderm or foregut development.
It is interesting that in the sea urchin, SpGsc promotes oral
ectoderm differentiation within the ectoderm gene net-
work [54] (http://sugp.caltech.edu/endomes/), and there-
fore, Ct-foxAB and Ct-gsc, along with Ct-otx, Ct-bra
and Ct-foxA, may be transcriptional regulators within an
analogous ectoderm network in Spiralia (Figure 4B).
The expression patterns of Ct-otx, Ct-blimp1, Ct-bra

and Ct-nkx2.1a indicate they each have specific roles in
foregut and midgut development and may be part of a
specification network in one or both of those regions.
Ct-otx, Ct-bra and Ct-nkx2.1a are expressed in 2nd
quartet micromeres, which contribute to the foregut
[32], and in the stomodeum after gastrulation. During
larval development, all four are expressed within foregut
tissues, which are formed from ectodermal and meso-
dermal germ layers, but not endoderm. And along with
Ct-foxA and Ct-gataB1 [37], Ct-otx, Ct-blimp1, Ct-bra,
Ct-nkx2.1a and Ct-nkx2.1b are deployed in overlapping
domains during foregut morphogenesis. In addition, it
should be noted that many other genes are expressed in
the developing foregut of C. teleta, including parahox
genes [34], pair-rule genes [98], and mesoderm pat-
terning genes [35,39], which reflect the complex deve-
lopmental control of this organ [31,37]. What is also
significant about the expression patterns in this study is
that most of them are detected over a period of several
days, starting from early embryogenesis in gut precur-
sors and persisting through gut morphogenesis during
larval development (Figure 3). Sustained expression may
indicate that particular transcription factors are required
to control an entire developmental process, including
gastrulation or the organization of groups of cells into
specific tissues, although this hypothesis would need
verification by functional experiments. Furthermore,
they are expressed in different germ layers and organ
systems, including the patterns we observed for Ct-otx,
Ct-blimp1, Ct-bra, Ct-nkx2.1a and Ct-nkx2.1b in the
nervous system. This implies that they are likely to be

http://sugp.caltech.edu/endomes/
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Figure 4 Comparative summary of gene expression in cell and organ territories during embryonic and larval development in Capitella
teleta. (A) Schematic illustrations of early embryonic stages and a table comparing the presence or absence of detectable gene expression in
selected blastomere and germ layer regions. (B) Schematic illustrations of post-gastrula and larval stages and a table comparing the presence or
absence of gene expression in selected tissues and organs associated with gut formation. Schematic stages are oriented in ventral view with
anterior to the left. The colored names and ovals identify C. teleta orthologs of the five core genes in the endomesoderm GRN ‘kernel’ of the sea
urchin. The five orthologs in (A) and (B) are separated by a dashed line from three additional C. teleta genes characterized in this study. The gray
shading represents endoderm. Abbreviations: ant, anterior; bp, blastopore; br, brain; cns, central nervous system; ec, ectoderm; en, endoderm; fg,
foregut; hg, hindgut; mg, midgut; mo, mouth; pos, posterior; St, stage; 1 m, 1st quartet micromere; 1 M, 1st quartet macromere; 3 m, 3rd quartet
micromeres; 3 M, 3rd quartet macromeres. Dotted line in stage 3 gastrula indicates the position of the blastopore. Thin solid lines internal to the
contour of the body in stages 3, 4 and 6 indicate the inner boundary of regions of ectoderm distinguished by low yolk content.
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important for specification events in the foregut, as well
as specification and patterning events in other tissues.
However, individual genes often exhibit different roles
during the course of animal development, and knowledge
of the evolutionary history of a gene is necessary to imply
gene-specific evidence of gene co-option [99-101].
The early expression of Ct-otx, Ct-bra and Ct-nkx2.1a

in 1q micromeres and 1Q macromeres has additional im-
plications for gut-related network interactions (Figures 2
and 4A). They are detectable in 8-cell embryos of C. teleta
just prior to transcription of Ct-bra, Ct-foxA and Ct-
gataB1 at the blastula stage. It is during a similar stage of
development when orthologs of Otx provide cis-regulatory
inputs to GataE, Blimp1, Brachyury and FoxA transcrip-
tional regulators of the sea urchin endomesoderm GRN to
initiate the specification of endoderm and oral ectoderm
of the larval foregut [11,44,102]. The transcription factors
Ct-bra, Ct-nkx2.1a, Ct-nkx2.1b and Ct-foxA [37] also
exhibit overlapping expression patterns in the hindgut,
which could represent another potential site of gut-
specific, gene regulatory network interactions that should
be investigated further. When considered together, this
particular suite of DNA-binding genes are expressed in
C. teleta along the alimentary canal in foregut, midgut and
hindgut regions during periods of germ layer specification
and gut morphogenesis before metatrochophore larvae
settle and transform into feeding juvenile worms.

Evidence of similarity in endomesoderm specification
from gene expression in Spiralia
The two most thoroughly described endomesoderm spe-
cification networks both utilize interacting transcription
factors to specify endomesoderm within the embryo,
followed by the specification of distinct mesoderm and
endoderm cell lineages in C. elegans [103] and the sea
urchin [8]. However, they differ in important ways. First,
a single endomesoderm progenitor cell (EMS) is speci-
fied in the 4-cell embryo of C. elegans [104], whereas an
endomesoderm territory is specified within micromeres
on the vegetal pole in late cleavage-stage embryos of the
sea urchin [44]. Second, they differ in which ‘core’ tran-
scription factors are deployed. In C. elegans, two pairs of
GATA factors (med-1, med-2; end-1, end-3) are required
for establishing the EMS and E cells, and orthologs of
T-box (tbx-35) and FoxA (pha-4) genes specify the
MS blastomere and pharyngeal organ, respectively
[20,105-107]. In the sea urchin, all five ‘kernel’ genes are
deployed within the endomesoderm domain [8,10] and
have critical regulatory roles during endoderm specifica-
tion [11,13]. Interestingly, we find that in C. teleta the
expression patterns of Ct-otx, Ct-blimp1 and Ct-bra (this
study) along with Ct-foxA and Ct-GATA factors [37],
suggest that all five loci may have key roles during de-
velopment of the endoderm (Figure 4). This common
pattern of gene expression between the sea urchin and
C. teleta implies a remarkable level of similarity in endo-
derm specification between deuterostomes and lopho-
trochozoans, which is comparable for only a subset of
genes (FoxA, GATA) in ecdysozoans (Figure 5). And with
the exception of Blimp1 expression, four of the five
‘kernel’ genes are expressed in the endoderm of a cni-
darian as well (Figure 5). In subregions outside of endo-
derm, lophotrochozoans, deuterostomes and cnidarians
typically express Otx, Brachyury and FoxA in oral ecto-
derm and the developing foregut, representing another
common pattern of gene expression, although a pattern
that has not yet been described for ecdysozoan taxa.
When considering individual transcription factors, there
are broader trends in gut-related gene expression,
including the expression of Otx and FoxA in oral ecto-
derm; the expression of FoxA in foregut, midgut and
hindgut territories; at least one Gata4/5/6 gene in the
midgut; and the expression FoxA and Brachyury within
the hindgut (Figure 5). Across Metazoa, these genes ap-
pear to be consistently expressed in distinct subregions
(for example, foregut, midgut, hindgut) regardless of
germ layer boundaries, suggesting an additional level of
molecular similarity underlying gut formation that is
uncoupled from embryonic germ layer origin (Figure 5;
Additional file 9: Table S1 and References).
When compared with sea urchin endomesoderm genes,

the expression patterns of either individual or pairs of
gene orthologs have been characterized in very few proto-
stome taxa. Because of this, our ability to detect evidence
of similar or divergent gene regulatory networks across
Metazoa is limited, especially among spiralian taxa. This is
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are designated by black and white ovals, respectively. Each oval represents gene expression by in situ hybridization. For each taxon, gene-specific
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C. teleta is for the Ct-nkx2.1a ortholog. A supplementary table and list of references for all expression data in Figure 5 are available in Additional
file 9: Table S1.
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particularly surprising when we consider that one of the
hallmarks of spiralian development is the highly conserved
fate of the 4d cell as a mesendoderm precursor (see
[108]). Within Spiralia, Otx is expressed in the stomo-
deum of both the marine polychaete Platynereis dumerilii
and the limpet Patella vulgata, whereas expression in
mesoderm or endoderm has not been reported for either
of these species [55,68]. A brachyury gene, Pd-bra, is
expressed in larval foregut and hindgut ectoderm and
apparently in midgut endoderm of P. dumerilii [55]. In
P. vulgata, a brachyury ortholog (PvuBra) is expressed
in the 3D cell and other macromeres and in the
mesentoblast (4d), which are endodermal and mesoder-
mal precursors, respectively. PvuBra is also detected in
cells that form parts of the mouth and anus [67]. In the
developing trochophore larva of P. dumerilii, a single
GATA factor (Pd-GATA456) is expressed in mesoderm
that is likely derived from endomesoderm; however, it is
not expressed in endoderm [71]. The expression pat-
terns for Pd-bra and Pd-GATA456 have not yet been
traced back to blastomere identities in early embryonic
stages when initial germ layer specification is thought to
occur in spiralians, although the suggested expression
domains are consistent with cell lineage data [109]. A
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foxA gene (forkhead) is clearly expressed in the endoderm
and larval foregut of P. vulgata [56]; in the foregut and
hindgut, but not midgut, in another mollusk, Haliotus
rufescens [50]; in the foregut of P. dumerilii [73]; in the
pharynx of a turbellarian flatworm [110]; and in presump-
tive gut tissue in a bryozoan [60]. When compared with
C. teleta, it appears that only orthologs of brachyury and
FoxA in both P. dumerilii and P. vulgata show overall
similar expression patterns. Prior to this study, expression
patterns for Otx, Blimp1, Bra and FoxA were cha-
racterized in another spiralian, the polychaete H. elegans
[69,70,72,75], where each ortholog was shown to have
some gut-related expression (Figure 5). Those efforts,
along with our investigations, are based on an assertion
that the ‘kernel’ is considered to be the most ‘evolutionar-
ily inflexible’ component of the endomesoderm GRN [10].
Thus, in a few spiralian taxa, several transcription factors
show a conserved pattern of expression relative to the sea
urchin endomesoderm ‘kernel’; yet, they also show unique
expression domains that are not directly comparable with
orthologs in either echinoderms or C. elegans (Figure 5).
In addition to our findings that several of the core

‘kernel’ genes show conserved patterns of expression bet-
ween the sea urchin, C. teleta, and other spiralians, there
is evidence that additional genes might be conserved
within an ancient endomesodermal network. For exam-
ple, in C. teleta it has been shown that in larval stages,
hedgehog [33] and Wnt16 [111] are expressed in foregut
and hindgut domains, and both notch and delta [112]
are expressed in complex patterns that include foregut
tissues. Of even greater interest for comparison with
the sea urchin endomesoderm GRN, two Eve genes of
C. teleta (Ct-eve1 and Ct-eve2) are not only expressed
in larval foregut and hindgut domains, but are also
expressed in mesodermal precursor cells [98], which are
typically a source of endomesoderm derived from the
mesentoblast (4d) in other spiralians [2,26]. Further-
more, Ct-eve1 is expressed in the endoderm of post-
gastrula stage embryos, in a similar place and time as a
snail gene (CapI-sna1) in C. teleta [35]. Both genes may
be involved in a regulatory process that controls cell
division, shape and differentiation in the presumptive
midgut where both Ct-eve1 and Cap-sna1 transcripts
overlap the endodermal expression domains of Ct-otx,
Ct-blimp1, Ct-bra, Ct-foxA, Ct-gataB1 and Ct-nkx2.1a.

Conclusions
Within Spiralia, data from Capitella teleta provide the
most comprehensive catalogue of comparable expression
patterns for transcriptional regulators of the sea urchin
endomesoderm ‘kernel’. Those patterns indicate that five
core orthologs of the endomesoderm GRN are involved
in regulating endoderm specification and midgut deve-
lopment in C. teleta. All five orthologs are also expressed
in patterns consistent with roles in foregut development,
and a subset of these and other genes are most likely
involved with mouth (Ct-otx, Ct-bra, Ct-foxA, Ct-foxAB
and Ct-gsc) and hindgut (Ct-bra, Ct-foxA, Ct-nkx2.1a and
Ct-nkx2.1b) development in C. teleta. And by extending
the comparison to a broad diversity of animals, we re-
cognize that several of these transcription factors exhibit
highly similar patterns of expression in specific gut subre-
gions, both within and outside of the Bilateria (Figure 5).
Collectively, those patterns, along with detailed expression
patterns presented in this study, indicate there is strong
evidence for molecular conservation during metazoan gut
formation. Thus, it is likely that networks of ‘gut genes’
were established to regulate development within distinct
subregions of animal digestive systems prior to the radia-
tion of Bilateria, with subsequent loss of expression and/
or alternate patterns of expression evolving within lineages
of Cnidaria, Ecdysozoa, Lophotrochozoa and Deuterosto-
mia. Davidson and Erwin [10] predicted that once com-
parative network data are available from other animals,
‘there will be found conserved network kernels similar in
complexity and character’ to what is characterized in the
endomesoderm GRN that is common to a sea urchin and
starfish. Although our study of gene expression in C. teleta
is not a direct indicator of gene function or gene inter-
action, it is an important resource for comparisons of mo-
lecular development within Metazoa, and it provides a
tractable and testable target for future functional studies.
The next steps for inferring regulatory interactions and
establishing the first basic ‘wiring diagrams’ of a network
in Spiralia will require quantitative comparisons of the
timing and amount of gene expression, and perturbation
experiments that interrupt gene function. With the com-
bination of genomic data, gene expression, and a com-
prehensive cell lineage and fate map of early development,
C. teleta is emerging as an important research animal for
studies on developmental gene regulation.
Additional files

Additional file 1: Document S1. Accession numbers for amino acid
sequences used in gene orthology analyses.

Additional file 2: Figure S1. Orthology analysis of the Otx transcription
factor of Capitella teleta. The cladogram of the Bayesian consensus tree was
produced from an amino-acid alignment of conserved homeodomain
regions. The orthodenticle gene of C. teleta (Ct-otx) is a member of the
paired class of homeodomain transcription factors, and groups with Otx
factors separately from other paired-like homeodomain proteins. Posterior
probabilities >0.80 are placed above nodes; maximum likelihood bootstrap
values >50% are placed below nodes; there is general agreement between
tree topologies. Species abbreviations: Aj, Apostichopus japonicus; Ami,
Acropora millepora; Amphi, Branchiostoma floridae; Ci, Ciona intestinalis;
Cr, Convolutriloba retrogemma; Ct, Capitella teleta; Dm, Drosophila
melanogaster; Dr, Danio rerio; He, Hydroides elegans; Hec, Herdmania curvata;
Hpr, Holopneustes purpurescens; Hs, Homo sapiens; Lg, Lottia gigantea;
Mm, Mus musculus; Mmul, Macaca mulatta; Nv, Nematostella vectensis;
Ob, Octopus bimaculoides; Pdu, Platynereis dumerilii; Pv, Patella vulgata; Sko,
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Saccoglossus kowalevskii; Sp, Strongylocentrotus purpuratus; Tc, Tribolium
castaneum.

Additional file 3: Figure S2. Orthology analysis of the Blimp1
transcription factor of Capitella teleta. The cladogram of the Bayesian
consensus tree was produced from an amino-acid alignment of
conserved C2H2 zinc finger domains. The PRDM-1/B lymphocyte-induced
maturation protein-1 gene of C. teleta (Ct-blimp1) contains both a
conserved positive regulatory domain-1 element and zinc finger domain,
and groups within a clade of similar proteins. Posterior probabilities >0.80
are placed above nodes; maximum likelihood bootstrap values >50%
are placed below nodes; there is general agreement between tree
topologies. Species abbreviations: Ag, Anopheles gambiae str. PEST; Bf,
Branchiostoma floridae; Cb, Caenorhabditis briggsae; Ce, Caenorhabditis
elegans; Ct, Capitella teleta; Dm, Drosophila melanogaster; Dr, Danio rerio;
Hs, Homo sapiens; Lg, Lottia gigantea; Mm, Mus musculus; Mmul, Macaca
mulatta; Sp, Strongylocentrotus purpuratus; Tr, Takifugu rubripes; Tc,
Tribolium castaneum; X, Xenopus laevis.

Additional file 4: Figure S3. Orthology analysis of the Brachyury
transcription factor of Capitella teleta. The cladogram of the Bayesian
consensus tree was produced from an amino-acid alignment of
conserved T-domains. The brachyury gene of C. teleta (Ct-bra) groups
within the Brachyury/T subfamily of T-box family DNA-binding proteins.
Posterior probabilities >0.80 are placed above nodes; maximum
likelihood bootstrap values >50% are placed below nodes; there is
general agreement between tree topologies. Species abbreviations:
Bf, Branchiostoma floridae; Ci, Ciona intestinalis; Cl, Convolutriloba
longifissura; Ct, Capitella teleta; Dm, Drosophila melanogaster; Lv, Lytechinus
variegatus; Ml, Mnemiopsis leydyi; Mm, Mus musculus; Nv, Nematostella
vectensis; Pd, Platynereis dumerilii; Pv, Patella vulgata, Strongylocentrotus
purpuratus; Sk, Saccostrea kegaki; Sko, Saccoglossus kowalevskii; Ta Trichoplax
adhaerens; Tc, Tribolium castaneum; X, Xenopus laevis.

Additional file 5: Figure S4. Orthology analysis of the Nkx2.1a
transcription factor of Capitella teleta. The cladogram of the Bayesian
consensus tree was produced from an amino-acid alignment of
conserved NKX homeodomains. There are two Nkx2.1 paralogs in
C. teleta. The Ct-nkx2.1a gene groups within a clade of Nkx2.1 proteins
that is separate from a clade of Nkx2.2 proteins. Posterior probabilities >0.80
are placed above nodes; maximum likelihood bootstrap values >50% are
placed below nodes; there is general agreement between tree topologies.
Species abbreviations: Bf, Branchiostoma floridae; Ct, Capitella teleta; Dm,
Drosophila melanogaster; Hs, Homo sapiens; Lg, Lottia gigantea; Pd, Platynereis
dumerilii; purpuratus.

Additional file 6: Figure S5. Orthology analysis of the Goosecoid
transcription factor of Capitella teleta. The cladogram of the Bayesian
consensus tree was produced from an amino-acid alignment of
conserved homeodomains from the paired (PRD) homeobox family of
proteins. The goosecoid gene of C. teleta (Ct-gsc) groups within a clade
of Gsc homeobox proteins. Posterior probabilities >0.80 are placed above
nodes; maximum likelihood bootstrap values >50% are placed below
nodes; there is general agreement between tree topologies. Species
abbreviations: Am, Apis mellifera; Bf, Branchiostoma floridae; CapI, Capitella
sp. I (currently known as C. teleta); Ct, Capitella teleta; Cl, Convolutriloba
longifissura; Dm, Drosophila melanogaster; Dr, Danio rerio; Ht, Heliocidaris
tuberculata; Hv, Hydra vulgaris; Lv, Lytechinus variegatus; Mm, Mus
musculus; Nv, Nematostella vectensis; Pd, Platynereis dumerilii; Pv, Patella
vulgata, Strongylocentrotus purpuratus; Tc, Tribolium castaneum.

Additional file 7: Figure S6. Additional expression patterns of Otx,
Blimp1, Brachyury and FoxAB in Capitella teleta. (A-B) Stage 3 mid-gastrula
in vegetal (A) and lateral view with vegetal side down (B). Ct-otx is
expressed in surface and subsurface cells (black arrows) around the
posterior side of the blastopore (yellow dashed line), and in cells at the
anterior (white arrowheads) and posterior (black arrowheads) sides of the
embryo. (C-D) Stage 3 gastrula in vegetal (C) and lateral view with
vegetal side down (D). Ct-blimp1 expression is restricted to cells on the
vegetal hemisphere (black arrows) within and around the blastopore
(yellow dashed line). (E) Stage 4 early larva with Ct-bra expression in
the brain (white arrowhead), stomodeum (white arrow), endoderm
(black arrows), and the posterior end of the larva (black arrowhead).
(F-G) Stage 5 larva showing Ct-blimp1 expression in the brain
(white arrowhead), foregut (white arrows) and endoderm (black arrows).
(H) Stage 6 larva with Ct-bra expression in the brain (white arrowheads),
foregut (white arrows), mesoderm along ventro-lateral sides of the trunk
(dashed arrows), and the anus (black arrowhead). (I) Stage 7 larva with
Ct-foxAB expression in the brain (white arrowheads), mouth (asterisk),
foregut (white arrows) and ventro-lateral mesoderm of posterior
segments (dashed arrows). Asterisk marks the position of the mouth;
anterior is to the left in all panels. Abbreviations: lat, lateral; vent, ventral;
veg, vegetal.

Additional file 8: Figure S7. Expression of Nkx2.1b in Capitella teleta
larvae. (A-B) Ct-nkx2.1b is expressed in both lobes of the brain
(white arrowheads), and in a subsurface domain on either side of the
stomodeum (white arrows) in stage 4 larvae. (C) Expression of Ct-nkx2.1b
in brain (white arrowheads), foregut (white arrows) and a ventrolateral
domain in the ectoderm (white dashed arrows) and mesoderm (dashed
arrows) of the trunk during stage 5. (D) In stage 6 larvae, there is
expression of Ct-nkx2.1b in the brain (white arrowheads), foregut (white
arrows), in ectoderm, including in the ventral nerve cord (white dashed
arrows), mesoderm of the trunk (dashed arrows), and hindgut (black
arrowhead). The image in each panel was created by combining
micrographs from a series of focal planes. Asterisk marks the position of
the mouth; anterior is to the left in all panels. Abbreviations: lat, lateral;
vent, ventral.

Additional file 9: Table S1. References for gene expression within
metazoan digestive organ systems. The data in Table S1 correspond to
the gene expression data (colored, black and white ovals) summarized in
Figure 5 of the manuscript. Each number within the table is matched
with the corresponding number of its published reference in the
References for Table S1 below the table. In several cases, for a
particular taxon (left side of table) and gene (top of table) combination,
the expression patterns were compiled from more than one study of the
same species, or more than one species within a taxon, and are
represented by multiple references. All of the references are for
expression data obtained by in situ hybridization. For additional
information, see the figure caption for Figure 5.
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